پایدارسازی سیستم های کنترل غیرخطی با استفاده از قضیه زوبوف و شبکه های عصبی مصنوعی
نویسندگان
چکیده
در این مقاله، ما یک دسته از سیستم های کنترل غیرخطی را توسط شبکه های عصبی مصنوعی و قضیه زوبوف پایدار می کنیم. قضیه زوبوف یکی از قضایایی است که شرایطی را برای پایداری یک سیستم غیرخطی با ناحیه جذب معلوم، بیان می کند. از شبکه های عصبی استفاده کرده و توسط آنها، تعدادی از توابع موجود در قضیه زوبوف را تقریب می زنیم بدین ترتیب کنترل کننده یک سیستم کنترلی غیرخطی که به لحاظ ریاضی یافتن ضابطه آن آسان نیست معلوم می شود. در این تحقیق دو استراتژی را انجام داده ایم. همچنین ما روش بهینه سازی نلدر مید را برای یادگیری شبکه عصبی بکار برده ایم. نهایتاً تاثیر و قابلیت کاربرد روش مفروض با مثال های عددی توضیح داده شده است.
منابع مشابه
پایدارسازی دستگاه های کنترل غیرخطی با استفاده از قضیه زوبوف و شبکه های عصبی مصنوعی
قضیۀ زوبوف یکی از قضایایی است که برای پایداری یک دستگاه غیرخطی با دامنه ربایش معلوم شرایطی را بیان می کند. از شبکه های عصبی استفاده کرده و با آن ها، تعدادی از توابع موجود در قضیۀ زوبوف را تقریب می زنیم، بدین ترتیب کنترل کنندۀ یک دستگاه کنترل غیرخطی، که به لحاظ ریاضی یافتن ضابطۀ کنترل آن آسان نیست، به دست می آید. در این تحقیق دو استراتژی مختلف را به کار می گیریم و نهایتاً تأثیر و قابلیت روش های...
متن کاملپایدارسازی دسته ای از سیستم های کنترل غیرخطی با استفاده از شبکه های عصبی مصنوعی
هدف این رساله، پایدارسازی سیستم های کنترل غیرخطی از طریق شبکه های عصبی است. این کار در سیستم های غیرخطی گسسته و پیوسته انجام شده است. در سیستم های گسسته نسبت به پیوسته عملکرد شبکه های عصبی بهتر بود. نوع شبکه های بکار رفته شده غالباً از نوع چند لایه است که در آن قوانین یادگیری متفاوتی بکار رفته است. در حالت کلی دو نوع یادگیری بنام برخط و نه برخط وجود دارد، هر دو حالت را در سیستم ها انجام داده و پ...
15 صفحه اولپایدارسازی سیستم های کنترل غیرخطی با استفاده از شبکه های عصبی مصنوعی
هدف این رساله، پایدارسازی سیستم های کنترل غیرخطی از طریق شبکه های عصبی است. این کار در سیستم های غیرخطی گسسته و نیز پیوسته انجام شده است. در سیستم های گسسته نسبت به حالت پیوسته عملکرد شبکه های عصبی بهتر بود. نوع شبکه های بکار رفته شده غالباً چند لایه است که در آن، قوانین یادگیری متفاوتی بکار گرفته شده است. دو نوع یادگیری در دو حالت برخط و نه برخط انجام شده است، هر دو حالت را انجام داده و به پاید...
پیشبینی بلند مدت رواناب با استفاده از شبکه های عصبی مصنوعی و سیستم استنتاج فازی
مدلهای مفهومی بر مبنای هوش مصنوعی، اغلب برای پیشبینیهای کوتاه مدت و میان مدت هیدورلوژیکی به کار رفته اند. در این مقاله با استفاده از مفهوم تولید مجموعه ای از پیشبینیها1 (ESP) و تفکیک مدلسازی برای متغیرهای اقلیمیو هیدرولوژیکی، از مدلهای مفهومی برای پیشبینی بلندمدت حجم جریان رودخانه زاینده رود در محل ورودی به سد زاینده رود استفاده میشود. سیستم استنتاج فازی برای پیشبینی بار...
متن کاملمدلسازی نفوذپذیری سیستم بیوراکتورغشایی با استفاده از شبکه عصبی مصنوعی
مدلسازی برای سیستم های پیچیده ای همچون بیوراکتور غشایی به دلیل امکان اجرای آزمایشهای مجازی زیاد در زمان کوتاه ابزاری قدرتمند است، اگرچه نیازمند اعتبار تجربی و تبدیل فرایند به مدل ریاضی می باشد. در این پژوهش به مدلسازی فرایند فیلتراسیون توسط شبکه های عصبی با استفاده از نرم افزار MATLAB 8.1 (2013) پرداخته شده و از داده های تجربی یک سیستم بیوراکتور غشایی غوطه ور مجهز به غشاء کوبوتا جهت تصفیه فاضلا...
متن کاملپیش بینی منابع مالی بانک با استفاده از مدل خطی( ARIMA) و غیرخطی شبکه های عصبی مصنوعی فازی
یکی از مهمترین موارد مورد علاقه مدیران بانکی به عنوان متغیری تأثیرگذار بر صنعت بانکداری، اطلاع از وضعیت سپردههای بانکی است که فعالیت بانک تا حد زیادی بستگی به آن دارد. ازاینرو مدیران بانکها علاقهمند هستند بدانند که میزان کل سپردههای بانک در زمان معینی در آینده چقدر خواهد بود. پیشبینی میزان سپردهها، تغییر و نوسان این سپردهها میتواند در امر برنامهریزی و تصمیمگیری به بانکها کمک نماید....
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
علومجلد ۱۷، شماره ۴۰، صفحات ۵۱-۶۲
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023